Conjugated Polymers for Optoelectronic Applications

Polymer Electronics is expected to become one of the key technologies in the 21st century. Semiconducting polymers are predicted to become the semiconducting material of this century, gaining a comparable share on the market as Si based technology gained during the previous century.

Conjugated polymers exhibit a great variety of technologically relevant properties as for example absorption and emission of light or electrical and photoconductivity, thus making them useful materials for the application in electronic devices (Figure 1).[1]

Organic polymers typically offer the advantage that they are light-weight and flexible materials which can be processed from solution by spin coating or inkjet printing at room temperature. Especially, low band gap (LBG) donor-acceptor polymers are of interest owing to the possibility of attaining multiple redox states (p-type or n-type doping) in a small potential window.[2] This is due to the placement of the valence band relative to the conduction band. By using strong donors with high HOMO energy levels, and strong acceptors with low LUMOs, one can control the magnitude of the polymer band gap.[3] This makes them promising for the production at low cost and for large-area employments in supercapacitors, ambipolar field-effect transistors, solar cells, light-emitting devices and electrochromic devices.

Figure 1. Organic light emitting diodes, organic photovoltaics and field effect transistor device architectures

Significant revolution in the chemistry and molecular engineering of conjugated polymers has been witnessed by the increased demand for novel electron donor conjugated polymers in the area of organic photovoltaics (OPVs).[4] New electron donor conjugated polymers were developed, based on the design rules presented below:

- low band gap of 1.4 – 1.8 eV,
- deep HOMO level of around 5.4 – 5.6 eV,
- LUMO level of 3.4 – 3.6 eV,
- high molecular weight for high quality thin films
- charge carrier mobility of 10^{-3} cm2/Vs

that when blended with [6,6]-phenyl-C$_{61}$-butyric acid methyl ester (PC$_{61}$BM) fullerene derivative, significant improvements in device performance has been observed.[5]

For example, power conversion efficiencies (PCEs) of ~8%, based on blends of conjugated polymers as electron donors and soluble fullerene derivatives, especially PC$_{61}$BM or [6,6]-phenyl-C$_{71}$-butyric acid methyl ester (PC$_{71}$BM) as electron acceptors, have been presented.[6] Some of the state-of-the-art
electron donor conjugated polymers are presented on Scheme 1.

Scheme 1. State-of-the-art electron donor polymers for organic photovoltaics

In order to further increase the PCE, one approach is to stack, in series, multiple photoactive layers with complementary absorption spectra to construct a tandem OPV. In a typical double-junction cell, such a tandem structure consists of a bottom cell with a high-bandgap material, an interconnecting layer (ICL), and a top cell comprising a low-bandgap material. When compared to a single-junction device made using low-bandgap materials, this tandem structure has a reduced photovoltage loss during the photon-to-electron conversion process (Figure 2).

Because the two cells are connected in series, the total current will be limited by the bottom sub-cell with the lower current. Obtaining a high current in the bottom cell is a great challenge, because most of the high-energy portion of the incident light will have already been absorbed by the bottom device. Therefore, a carefully designed semiconducting polymer will perform well in tandem cells only if it can achieve high current by efficiently using the low-energy portion of the solar spectrum.

The most representative high-bandgap polymer donor is regioregular poly(3-hexylthiophene) (rrP3HT). rrP3HT:PCBM OPV devices have reached PCEs over 4% by device optimization. However, the further improvement of the photovoltaic performance of the rrP3HT:PCBM system is mainly limited by the high LUMO offset between rrP3HT and PCBM. By careful molecular engineering, a new indacene bisadduct fullerene derivative (ICBA) was synthesized that presented up-shifted LUMO level, as compared to PCBM (Figure 3).

OPV devices based on rrP3HT:ICBA exhibited higher PCE (5.5-6.5%) with simultaneously enhanced short-circuit current (J_{sc}), open-circuit voltage (V_{oc}) and fill factor (FF) as compared to rrP3HT:PCBM. Therefore, rrP3HT:ICBA represents today the system of choice as bottom sub-cell for high performance tandem solar cells. This breakthrough in the increase of the PCE of rrP3HT:ICBA paves the way for the development of other high bandgap conjugated polymers with enhanced photovoltaic performances as compared to those of rrP3HT:ICBA.
ADVENT Technologies (http://www.advent-energy.com) is involved in the production of innovative materials and systems for their application in renewable energy sources and has commercial activity related to fuel cells\cite{12-14} and organic photovoltaics.\cite{15-17}

ADVENT Technologies provides:
High and Low-bandgap conjugated polymers which are available for laboratory evaluation and research proposal via Custom Synthesis

The conjugated polymers or blends thereof with ICBA or PCBM as electron acceptors can be applied in:

- Field Effect Transistors
- Single solar cells
- Tandem solar cells
- Dye-sensitized solar cells
<table>
<thead>
<tr>
<th>Name</th>
<th>Structure</th>
<th>Quantity</th>
<th>Optoelectronic Data</th>
</tr>
</thead>
</table>
| ADVPOL001a | ![Structure](image1.png) | 500mg | $E_g^{\text{opt}} = 2.00\text{eV}$ \\
| ADVPOL001b | ![Structure](image2.png) | 1g | LUMO= -2.90eV \\
| | | | HOMO= -4.90eV \\
| | | | Hole mobility (TOF)= 5.1x10^{-5} cm^2/Vs \\
| | | | PCE = 4.4%
| ADVPOL002a | ![Structure](image3.png) | 500mg | $E_g^{\text{opt}} = 1.90\text{eV}$ \\
| ADVPOL002b | ![Structure](image4.png) | 1g | LUMO= -3.40eV \\
| | | | HOMO= -5.50eV \\
| | | | Hole mobility (SCLC)= 6.0x10^{-6} cm^2/Vs \\
| | | | PCE = 3.5%
| ADVPOL003a | ![Structure](image5.png) | 500mg | $E_g^{\text{opt}} = 1.82\text{eV}$ \\
| ADVPOL003b | ![Structure](image6.png) | 1g | LUMO= -3.59eV \\
| | | | HOMO= -5.39eV \\
| | | | Hole mobility (FET)= 1.0x10^{-3} cm^2/Vs \\
| | | | PCE = 5.45%
| ADVPOL004a | ![Structure](image7.png) | 500mg | $E_g^{\text{opt}} = 1.88\text{eV}$ \\
| ADVPOL004b | ![Structure](image8.png) | 1g | LUMO= -3.60eV \\
| | | | HOMO= -5.45eV \\
| | | | Hole mobility (FET)= 1.0x10^{-3} cm^2/Vs \\
| | | | PCE = 6.1%
| ADVPOL005a | ![Structure](image9.png) | 500mg | $E_g^{\text{opt}} = 1.57\text{eV}$ \\
| ADVPOL005b | ![Structure](image10.png) | 1g | Hole mobility (FET)= 2.0x10^{-4} cm^2/Vs \\
| | | | PCE = 2.10%
| ADVPOL006a | ![Structure](image11.png) | 500mg | $E_g^{\text{opt}} = 1.53\text{eV}$ \\
| ADVPOL006b | ![Structure](image12.png) | 1g | LUMO= -3.17eV \\
| | | | HOMO= -4.99eV \\
| | | | Hole mobility (SCLC)= 3.0x10^{-6} cm^2/Vs \\
| | | | PCE = 2.95%
| ADVPOL007a | ![Structure](image13.png) | 500mg | $E_g^{\text{opt}} = 1.46\text{eV}$ \\
| ADVPOL007b | ![Structure](image14.png) | 1g | LUMO= -3.43eV \\
| | | | HOMO= -5.00eV \\
| | | | PCE = 2.18%

[18] [19] [20] [21] [22] [23] [24]
ADVPOL008a
500mg 1g

- $E_g^{opt} = 2.06\text{eV}$
- LUMO = -2.69eV
- HOMO = -5.05eV
- PCE = 1.6%

ADVPOL009a
500mg 1g

- $E_g^{opt} = 1.88\text{eV}$
- LUMO = -2.89eV
- HOMO = -5.38eV
- Hole mobility (FET) = $1.9 \times 10^{-3} \text{cm}^2/\text{Vs}$
- PCE = 2.22%

ADVPOL010a
500mg 1g

- $E_g^{opt} = 1.88\text{eV}$
- LUMO = -2.89eV
- HOMO = -5.38eV
- Hole mobility (FET) = $1.9 \times 10^{-3} \text{cm}^2/\text{Vs}$
- PCE = 2.22%

ADVPOL011a
500mg 1g

- $E_g^{opt} = 1.88\text{eV}$
- LUMO = -2.89eV
- HOMO = -5.38eV
- Hole mobility (FET) = $1.9 \times 10^{-3} \text{cm}^2/\text{Vs}$
- PCE = 2.22%

ADVPOL012a
500mg 1g

- $E_g^{opt} = 1.88\text{eV}$
- LUMO = -2.89eV
- HOMO = -5.38eV
- Hole mobility (FET) = $1.9 \times 10^{-3} \text{cm}^2/\text{Vs}$
- PCE = 2.22%

ADVPOL013a
500mg 1g

- $E_g^{opt} = 1.88\text{eV}$
- LUMO = -2.89eV
- HOMO = -5.38eV
- Hole mobility (FET) = $1.9 \times 10^{-3} \text{cm}^2/\text{Vs}$
- PCE = 2.22%
<table>
<thead>
<tr>
<th>Compound</th>
<th>Molecular Structure</th>
<th>500mg</th>
<th>1g</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVPOL014a</td>
<td></td>
<td>500mg</td>
<td>1g</td>
<td>$E_g^{\text{opt}} = 1.88\text{eV}$ LUMO=-3.20eV HOMO=-5.30eV Hole mobility (FET)= 5.0×10^{-4} cm2/Vs PCE=1.0%</td>
</tr>
<tr>
<td>ADVPOL014b</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ADVPOL015a</td>
<td></td>
<td>500mg</td>
<td>1g</td>
<td>$E_g^{\text{opt}} = 1.70\text{eV}$ LUMO=-3.30eV HOMO=-5.70eV PCE=6.0%</td>
</tr>
<tr>
<td>ADVPOL015b</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ADVPOL016a</td>
<td></td>
<td>500mg</td>
<td>1g</td>
<td>$E_g^{\text{opt}} = 1.60\text{eV}$ LUMO=-3.31eV HOMO=-5.15eV Hole mobility (SCLC)= 5.8×10^{-4} cm2/Vs PCE=9.2%</td>
</tr>
<tr>
<td>ADVPOL016b</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ADVPOL017a</td>
<td></td>
<td>500mg</td>
<td>1g</td>
<td>$E_g^{\text{opt}} = 1.82\text{eV}$ LUMO=-3.10eV HOMO=-5.56eV Hole mobility (SCLC)= 1.0×10^{-4} cm2/Vs PCE=7.3%</td>
</tr>
<tr>
<td>ADVPOL017b</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
ADVPOL020a
ADVPOL020b

500mg
1g

$E_g^{\text{opt}} = 1.82\text{eV}$

HOMO$ = -5.40\text{eV}$

PCE$ = 7.3\%$

ADVPOL021a
ADVPOL021b

500mg
1g

$E_g^{\text{opt}} = 1.85\text{eV}$

LUMO$ = -3.56\text{eV}$

HOMO$ = -5.61\text{eV}$

PCE$ = 6.17\%$

References

Disclaimer

ADVENT Technologies is dedicated to provide the materials according to customer’s needs, and some materials being promoted may be solely offered to certain customers for their specific needs in their research and development projects on a custom synthesis basis or on a contract research basis. All the material is offered as it is, along with the information and technical advice-where verbal, in writing or by way of trials-are given in good faith and are believed to be accurate but without warranty since the conditions of use are beyond the control of ADVENT Technologies, and this also applies where proprietary rights of third parties are involved. ADVENT Technologies disclaims any liability in connection with the use of the material and the information, and does not warrant against infringement of any right of any third party, it is entire the responsibility of customers to check its applicability and legal status of a particular material as to its suitability for the intended processes and uses.

Contact Information

vgregoriou@advent-energy.com